Extensions 1→N→G→Q→1 with N=C3 and Q=C3×S32

Direct product G=N×Q with N=C3 and Q=C3×S32
dρLabelID
S32×C3236S3^2xC3^2324,165

Semidirect products G=N:Q with N=C3 and Q=C3×S32
extensionφ:Q→Aut NdρLabelID
C31(C3×S32) = C3×S3×C3⋊S3φ: C3×S32/S3×C32C2 ⊆ Aut C336C3:1(C3xS3^2)324,166
C32(C3×S32) = C3×C324D6φ: C3×S32/C3×C3⋊S3C2 ⊆ Aut C3124C3:2(C3xS3^2)324,167

Non-split extensions G=N.Q with N=C3 and Q=C3×S32
extensionφ:Q→Aut NdρLabelID
C3.1(C3×S32) = C3×S3×D9φ: C3×S32/S3×C32C2 ⊆ Aut C3364C3.1(C3xS3^2)324,114
C3.2(C3×S32) = S3×C32⋊C6φ: C3×S32/S3×C32C2 ⊆ Aut C31812+C3.2(C3xS3^2)324,116
C3.3(C3×S32) = S3×C9⋊C6φ: C3×S32/S3×C32C2 ⊆ Aut C31812+C3.3(C3xS3^2)324,118
C3.4(C3×S32) = C3×C32⋊D6φ: C3×S32/C3×C3⋊S3C2 ⊆ Aut C3186C3.4(C3xS3^2)324,117
C3.5(C3×S32) = S32×C9central extension (φ=1)364C3.5(C3xS3^2)324,115

׿
×
𝔽